nl_param_oat | R Documentation |
Create parameter sets with "one-at-a-time" (OAT) approach
nl_param_oat(n, ...)
n
|
Number of parameter sets per parameter |
...
|
Named list of parameter ranges (numeric vectors) Minimum and maximum values are used as a range and median as the default value. Parameters with only 1 value are treated as constants. |
A data frame with parameter value sets
See also nl_param_lhs
for latin cube and
nl_param_fast
for FAST parameter sampling.
# create 5 values for every parameter: nl_param_oat(n = 5, P1 = c(1, 4, 10), P2 = c(4, 11, 20)) # using constant parameters: nl_param_oat(n = 5, P1 = c(1, 4, 10), P2 = c(4, 11, 20), P3 = 6) # define NetLogo experiment with OAT design: experiment <- nl_experiment( model_file = "models/Sample Models/Biology/Flocking.nlogo", setup_commands = c("setup", "repeat 100 [go]"), iterations = 5, param_values = nl_param_oat( n = 25, # create 25 value sets per parameter max_align_turn = c(0, 5, 20), max_cohere_turn = c(0, 3, 20), max_separate_turn = c(0, 1.5, 20), vision = c(1, 3, 10), minimum_separation = c(0, 3, 10), .dummy = c(0,0.5,1), world_size = 50, population = 80 ), mapping = nl_default_mapping, step_measures = measures( converged = "1 - (standard-deviation [dx] of turtles + standard-deviation [dy] of turtles) / 2", mean_crowding = "mean [count flockmates + 1] of turtles" ), eval_criteria = criteria( c_converged = mean(step$converged), c_mcrowding = mean(step$mean_crowding) ), repetitions = 10, # repeat simulations 10 times random_seed = 1:10 )