A tool for NetLogo experiment definition, exploring simulation results and model optimization. Makes it easy to turn the cycle of experiment definition, data analysis, visualisations and parameter fitting into readable and reproducible documents.
devtools::install_github("bergant/nlexperiment")
Fire Experiment example demonstrates how to:
Segregation example shows how to obtain data from individual NetLogo agents:
Network example collects values from turtles and their links:
Traffic example collects values from individual turtles per each time step:
DLA (diffusion-limited aggregation) example demonstrates how to read position and other variables from NetLogo patches (after simulation run).
The following examples show how to define parameter value sets. See also examples in Sensitivity Analysis for other parameter space exploring methods.
Ants example demonstrates experiment definition with full factorial design and mapping parameters to NetLogo variables.
Fur Patterns demonstrates explicit definition of parameter value sets with transformed parameter space.
Flocking Example demonstrates temporal measure definition and visualization of temporal measures in the parameter space:
It is the first in a series of parameter space exploration of the Flocking model
Categorical Criteria example explores parameter space with full factorial design and categorical criteria:
Hyper Latin Cube Sampling examples demontrate how to explore parameter space with categorical criteria and sampling methods.
Example Random sampling explores 5-dimensional parameter space of NetLogo Flocking model with random sampling and scatter plots.
One-at-a-time example demonstrates sensitivity analysis with OAT method.
Example FAST demonstrates sensitivity analysis with Fourier Amplitude Sensitivity Test (FAST).
Parameter fitting with best-fit criterion and optimization methods.
Random Search demonstrate searching for optimal parameters using random search.
L-BFGS-B Optimization shows how to use standard optimization functions.
Nelder-Mead Optimization shows how to use optimization functions from other R packages.
Simulated Annealing demonstrates optimization with simulated annealing.
Genetic Algorithm demonstrates optimization with genetic algorithm.
Use R help for function reference. Download documentation in pdf or use package documentation online.